Analog

Power & Analog program

European
Multi System Market Competence Center
• **Standard linear**
 – Linear regulators
 – Comparators
 – Operational amplifier

• **Sensors**
 – Temperature
 – Proximity
 – Industrial I/O peripheral
 – MEMS
• **Standard linear**
 – **Linear regulators**
 – Comparators
 – Operational amplifier

• **Sensors**
 – Temperature
 – Light
 – Proximity
 – Industrial I/O peripheral
 – MEMS
• **Standard linear**
 – Linear regulators
 – **Comparators**
 – Operational amplifier

• **Sensors**
 – Temperature
 – Proximity
 – Industrial I/O peripheral
 – MEMS
Comparators – product portfolio

General purpose
- **Bipolar**
 - LM2901/3
 - 200µA / Comp
 - 1.3µs resp time
 - Open collector
 - TS372/4
 - 150µA / Comp
 - 0.6µs resp time
 - Open drain
 - TS339/393
 - 9µA / Comp
 - 1.5µs resp time
 - Open drain
- **CMOS**
 - TS3702/3704
 - 9µA / Comp
 - 1.5µs resp time
 - Push-Pull

Micropower
- **CMOS**
 - TS339/393
 - 9µA / Comp
 - 1.5µs resp time
 - Open drain
 - TS3702/3704
 - 9µA / Comp
 - 1.5µs resp time
 - Push-Pull
- **BiCMOS**
 - TS86x (R2R)
 - 6µA / Comp
 - 3µs resp time
 - Push-Pull
 - TS7211/21 (R2R)
 - 6µA
 - 3µs resp time
 - Push-Pull & Open drain

High Speed
- **Bipolar**
 - LM311
 - 5mA
 - 200ns resp time
 - Open E & C
 - TS302x (R2R)
 - 64µA
 - 33ns resp time
 - Push-Pull
- **BiCMOS**
 - LM319
 - 8mA
 - 80ns resp time
 - Open Collector
PRODUCT DESCRIPTION
- **64µA** power consumption
- **33ns** response time
- Operating From Vcc = 1.8V to 5V
- **Rail to Rail** Inputs
- Push-pull Outputs
- **TS3022 / SO8 miniSo8**

APPLICATIONS
- Telecom
- Industrial
- Consumer
TS86x micropower comparators

• PRODUCT DESCRIPTION
 – 6µA power consumption
 – 3µs response time
 – Operating From Vcc= 2.7V to 10V
 – Rail to Rail Inputs / Outputs
 – SOT23-5 packages for single
 – SO and TSSOP for the dual & quad

• APPLICATIONS
 – Portable electronics
 – Low voltage
 – Alarms
• **Standard linear**
 – Linear regulators
 – Comparators
 – **Operational amplifier**

• **Sensors**
 – Temperature
 – Proximity
 – Industrial I/O peripheral
 – MEMS
Operational amplifier – used technologies

BIPOLAR
- Lowest noise
- Highest gain
- Low offset voltage
- Wide bandwidth

WEAKNESS
- Fairly low Z input
- High current noise
- High current consumption

CMOS
- Low voltage
- Micropower
- Single supply
- Low input current
- High output voltage

FET
- High gain-BW
- High slew rate
- Low input current

WEAKNESS
- Higher input noise voltage
- Input voltage offset is worse than bipolar
Op-amp – new products

<table>
<thead>
<tr>
<th>Op-amp</th>
<th>channels</th>
<th>Vcc [V] min/max</th>
<th>Vio [mV] max</th>
<th>Iib [nA] max</th>
<th>Icc [µA] typ</th>
<th>GBP [MHz] typ</th>
<th>package</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSV911 TSV912 TSV914</td>
<td>1/2/4</td>
<td>2.5/5.5</td>
<td>1.5/4.5</td>
<td>0.010</td>
<td>780</td>
<td>8</td>
<td>SOT23-5L, SO8, MiniSO8, TSSOP14, SO14</td>
</tr>
<tr>
<td>TSV991 TSV992 TSV994</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSV991 TSV992 TSV994</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS507</td>
<td>1</td>
<td>2.7/5.5</td>
<td>0.1</td>
<td>70</td>
<td>850</td>
<td>1.9</td>
<td>SOT23-5L, SO8</td>
</tr>
</tbody>
</table>
FEATURES

- Rail to rail output
- CMOS input
- 2.5V to 5.5V supply operation
- High merit factor GBP/ICC
 - 8 MHz – 780µA per amplifier 8MHz
- 1pA (typ) input Bias Current

APPLICATIONS

- Battery-powered applications
- Portable devices
- Sensor signal conditioning
- Medical instrumentation
- Active filtering, buffering
FEATURES

- Rail to rail input / output
- CMOS input
- 2.5V to 5.5V supply operation
- Very high slew rate & GBP
 - 20MHz for gain≥3, CL=100pF
 - SR=10V/µs
 - ICC=780µA
- 1.5mV (max) input offset voltage
- 1pA (typ) input Bias Current

APPLICATIONS

- Motor control
- Battery-powered applications
- Sensor signal conditioning
- Medical instrumentation
- Active filtering, buffering
- Instrumentation / factory automation

Voltage gain and phase vs. frequency at \(V_{CC} = 5V \) and \(V_{ICM} = 2.5V \) for the TSV99x
• The Current Sensing Amplifiers is a new standard product family introduced by ST in 2007

• Different methodologies for current measurements
 – transformer sensor (high power)
 – hall-effect sensor (high power)
 – shunt resistor
 • low-side shunt: can be done with a rail-to-rail operational amplifier chosen among standard linear IC’s portfolio (example: TS507)
 • high-side shunt: new TSCxxx family
Introduction to current sensing
Principle of operation

- current measured by a shunt resistor
- differential voltage accurate amplification
- output voltage is referenced to GND

from supply to load

Dedicated input stage structure:
Common-mode voltage can be higher than supply voltage!

Vcc

Vp Vm

Out

Gnd

TSCxxx

Rsense

Vsense

Vreg 5V

μC ADC

Vout=Av.Vsense

ADC

5V

Vcc

TSCxxx

Vicm

common mode operating range

Vcc

Current sensing amplifier

Standard

Rail-to-rail
Introduction to current sensing
How TSC101 is supplied?

- A current proportional to \(V_{\text{sense}} \) is sunk into \(V_p \) pin:
 \[I_{\text{ib+}} = \frac{V_{\text{sense}}}{5K} \]

- The same current \(I_{\text{ib+}} \) flows into a 500K ground-referenced resistor (gain \(A_v=100V/V \))

- The resulting voltage is duplicated to output pin by a buffer

- The buffer amplifier is supplied by \(V_{\text{cc}} \)

\[V_{\text{out}} = A_v \cdot V_{\text{sense}} \]
- Independent supply and input common-mode voltages
- Wide common-mode operating range: 2.8 to 30V
- Wide common-mode surviving range: -0.3 to 60V
- Wide supply voltage range: 4 to 24V
- Low current consumption: $I_{cc \text{ max}} = 300\mu A$
- Internally fixed gain: 20V/V, 50V/V or 100V/V
- Buffered output
- 2kV ESD protection

- BCD Technology (Bipolar / Cmos / Dmos)
- SOT23-5 package
- -40 to 125°C operating temperature range
- Automotive grade qualification:
 - PPAP done
 - PAT in Q1 2008
 - Hot Test Q3 2008

Demonstration board available (bare PCB)
• **Standard linear**
 – Linear regulators
 – Comparators
 – Operational amplifier

• **Sensors**
 – Temperature
 – Proximity
 – Industrial I/O peripheral
 – MEMS
TEMPERATURE SENSORS
ST has recently added to its existing family of precision analog temperature sensors and developed a new family of precision digital temperature sensors. Both types are suitable for use in a wide range of applications in market segments such as industrial, consumer, medical and computer.

The **analog** temperature sensors feature *low power consumption* and *good linearity* and can operate over a temperature range as wide as **-55°C to +130°C**.

The **digital** temperature sensors feature *low power consumption*, up to *12-bit resolution* and can operate over a temperature range as wide as **-55°C to +125°C**.
Ultra low POWER Analog temperature sensor available in ultra small mDFN package

Features

- Analog temperature sensor:
 - -55°C/+130°C: SC70 package
 - -40°C/+85°C: uDFN package

- Supply voltage:
 - 2.7 to 5.5V across -55°C/+130°C
 - 2.4 to 5.5V across -40°C/+130°C

- Current max across all conditions: 8μA

- Accuracy:
 - @ 25°C: +/- 1.5%
 - @ -55°C/+130°C: 2.5%

- Ultra small uDFN package (1.3x1.0mm)

\[V_{out} = -11.79 mV/°C \times T + 1.8528 V \]
• **Standard linear**
 – Linear regulators
 – Comparators
 – Operational amplifier

• **Sensors**
 – Temperature
 – **Proximity**
 – Industrial I/O peripheral
 – MEMS
PROXIMITY SENSORS

• TDE0160 and TDA0161 proximity detectors.
 – TDA0161 is a 2 wires detector housed in SO-8 or DIP-8 package.
 – TDE0160 is a 3 wires detector housed in SO-14 package, it is a double-output detector with adjustable hysteresis

• Designed for ST’s proximity detector devices, they can be coupled with any type of inductive, capacitive, ultrasonic or optical detectors.

• *Metal body detection* in home & building automation

<table>
<thead>
<tr>
<th>Part number</th>
<th>Technology</th>
<th>Package</th>
<th>V_{CC} [V]</th>
<th>I_{CC} supply [mA]</th>
<th>I_{out} [mA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDA0161DP</td>
<td>Bipolar</td>
<td>DIP-8</td>
<td>4 to 35</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>TDA0161FP</td>
<td>Bipolar</td>
<td>SO-8</td>
<td>4 to 35</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>TDE0160FP</td>
<td>Bipolar</td>
<td>SO-14</td>
<td>4 to 36</td>
<td>1.2</td>
<td>40</td>
</tr>
</tbody>
</table>

APPLICATION NOTES

• AN1213: TDE1707 noise immunity, short circuit and reverse output protection characterization

• AN495: Effective filtering of TDE1707
• **Standard linear**
 – Linear regulators
 – Comparators
 – Operational amplifier

• **Sensors**
 – Temperature
 – Proximity
 – Industrial I/O peripheral
 – MEMS
CLT3-4B Current limited termination

- **CURRENT LIMITER**
 - Current limiter: $I_{\text{LIM}} = 3\,\text{mA}$
 - Meet IEC61131-2 type 1 & 3 input
 - Temperature compensated

- **WIDE RANGE OPERATION**
 - Input: - 30 to 35V ($R_i = 1.2\,\text{K}$)
 - Vcc: - 0.3 to 35V ($R_C = 4.7\,\text{K}$)
 - T_{AMB}: - 25 to 85ºC

- **OPTO-COUPLER INTERFACE**
 - Bypass opto-coupler for $I_{\text{IN}} < 1.5\,\text{mA}$
 - Feed opto-coupler when $V_1 > 11\,\text{V}$

- **INPUT PROTECTION**
 - Voltage **surge** IEC61000-4-5, 1kV
 - Burst immunity IEC 61000-4-4, 4kV
 - **ESD** IEC 61000-4-2, 8kV
 - Input reverse polarity biasing
CLT3-4B Current limited termination

- **REDUCED DISSIPATION**
 - 50% to 67% in the full sensor chain
 - 35% to 67% in the module

- **HIGHER DENSITY OF MODULE**
 - SMD Thin TSSOP20 package
 - Compact for high integration
 - Low component count

- **HIGHER RELIABILITY**
 - Over-voltage protected
 - Immune to fast transient
 - Limited input current

- **OPERATION INSENSITIVE TO**
 - Sensor impedance
 - Voltage & temperature
 - Reverse polarity connection
Current limited termination – key benefit

<table>
<thead>
<tr>
<th>INPUT COUNT PER MODULE</th>
<th>16</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLUTION</td>
<td>ACTIVE CLT3</td>
<td>PASSIVE DISCRETE</td>
</tr>
<tr>
<td>CHANNEL DISSIPATION</td>
<td>0.11W</td>
<td>0.3W</td>
</tr>
<tr>
<td>MODULE DISSIPATION</td>
<td>1.77W</td>
<td>4.8W</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>FOR SAME INPUT COUNT, DIVIDE MODULE SIZE BY 2</td>
<td>FOR SAME MODULE SIZE, MULTIPLY BY 2 INPUT COUNT</td>
</tr>
<tr>
<td></td>
<td>REDUCE COST</td>
<td>INCREASE PERFORMANCE</td>
</tr>
<tr>
<td>CLT PRODUCT</td>
<td>CLT3-4B</td>
<td>PCLT-2A</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>IEC 61131-2 input</td>
<td>Type 1 & 3</td>
<td>Type 1, 2, 3</td>
</tr>
<tr>
<td>Front End LED status</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Output drive</td>
<td>Isolated</td>
<td>Isolated or un-isolated</td>
</tr>
<tr>
<td></td>
<td>Opto transistor</td>
<td>Opto transistor</td>
</tr>
<tr>
<td></td>
<td>CMOS compatible</td>
<td></td>
</tr>
<tr>
<td>APPLICATION</td>
<td>High Input count module</td>
<td>Low Input count module</td>
</tr>
<tr>
<td></td>
<td>PLC</td>
<td>Proxy Sensor interface</td>
</tr>
<tr>
<td></td>
<td>Distributed I/O</td>
<td>Distributed I/O</td>
</tr>
<tr>
<td>Channel count</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Input current reg</td>
<td>2.8mA</td>
<td>Adj: 2.5 to 7.5mA</td>
</tr>
<tr>
<td>Surge level</td>
<td>1kV</td>
<td>Type 1 & 3: 1kV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type 2: 0.5kV</td>
</tr>
<tr>
<td>ESD Level</td>
<td>8kV</td>
<td>15kV</td>
</tr>
<tr>
<td>Package</td>
<td>TSSOP20 (14+6)</td>
<td>TSSOP14 exposed pad</td>
</tr>
</tbody>
</table>
• **Standard linear**
 – Linear regulators
 – Comparators
 – Operational amplifier

• **Sensors**
 – Temperature
 – Proximity
 – Industrial I/O peripheral
 – MEMS
• Micro Electro Mechanical System Technology exploits the mechanical properties of silicon to create movable structures that are able to sense acceleration or vibration in each direction.

• Applications in home & building automation:
 – User interfaces
 – Anti-theft systems
 – Remote device control
MEMS Portfolio

All product supported by Evaluation Kits
A world of applications

- Mobile phones and PDAs
- Portable media players
- Toys and games
- Laptop and pocket PCs
- Sports and health
- Audio and video devices
- Automotive
- Home appliances
- Industrial appliances
- Home security systems
MEMS: analog output

Analog output – key features
- Analog output with additional multiplexer output
- 2- and 3-axis
- Selectable full scale: +/- 2 g or +/- 6 g
- Power-down mode
- Resolution better than 0.5 mg @ 100 Hz
- <1 mA current consumption in normal mode
- <10 μA current consumption in power-down mode
- Embedded self test
- Temperature range -40 to +85 °C
- Factory trimmed parameters
- High shock survivability: 10,000G for 0.1 ms
- High thermal stability
- High lifetime stability
- LGA packages available
MEMS: digital output

Digital output – key features
- MEMS sensor and interface chip in one package
- 2- and 3-axis
- Direction detection
- Click and double click recognition
- Embedded high-pass filter
- I²C/SPI output
- Programmable bandwidth and data rate
- Resolution better than 1 mg
- Power-down mode
- 2 independent, programmable interrupt pins
- Wake-up/free-fall interrupt signal with programmable thresholds
- Temperature range -40 to +85 °C
- Factory trimmed parameters
- High shock survivability: 10,000G for 0.1 ms
- High thermal stability
- High lifetime stability
- LGA and QFN packages available
MEMS Portfolio

2-axis

<table>
<thead>
<tr>
<th>Package Type</th>
<th>Device Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO 24</td>
<td>LIS2L02AS4</td>
<td>Analog, PD 2g/6g FS</td>
</tr>
<tr>
<td>QFN</td>
<td>LIS2L02AQ3</td>
<td>Analog, PD 2g/6g FS, QFN-44</td>
</tr>
<tr>
<td>LGA</td>
<td>LIS2L02AL</td>
<td>Analog 2g FS, LGA-8, 5x5x1.5 mm</td>
</tr>
<tr>
<td></td>
<td>LIS2L06AL</td>
<td>Analog 2g/6g FS, LGA-8 5x5x1.5 mm</td>
</tr>
<tr>
<td></td>
<td>LIS3L02AQ5</td>
<td>Analog, PD 2g/6g FS, QFN-44</td>
</tr>
<tr>
<td></td>
<td>LIS3L06AL</td>
<td>Analog 2g/6g FS, LGA-8, 5x5x1.5 mm</td>
</tr>
<tr>
<td></td>
<td>LIS3LV02DQ</td>
<td>SPI/FC, PD 2g/6g FS, QFN-28</td>
</tr>
<tr>
<td></td>
<td>LIS3LV02DL *</td>
<td>SPI/FC, PD, 2g/6g FS, LGA16 7.5x4.4x1 mm</td>
</tr>
<tr>
<td></td>
<td>LIS302ALB</td>
<td>Analog 2g FS, LGA-14, 3x5x0.9 mm</td>
</tr>
<tr>
<td></td>
<td>LIS302ALK</td>
<td>Analog 2g FS, LGA-14, 3x5x0.9 mm</td>
</tr>
<tr>
<td></td>
<td>LIS302DL*</td>
<td>SPI/FC, PD, 2INT 2g/8g FS, LGA-14 3x5x0.9 mm</td>
</tr>
<tr>
<td></td>
<td>LIS244AL*</td>
<td>Analog, 3.5g FS, LGA-16, 4x4x1.5 mm</td>
</tr>
</tbody>
</table>

3-axis

<table>
<thead>
<tr>
<th>Package Type</th>
<th>Device Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO 24</td>
<td>LIS3L02AS4</td>
<td>Analog, PD 2g/6g FS</td>
</tr>
<tr>
<td>QFN</td>
<td>LIS3L02AQ3</td>
<td>Analog, PD 2g/6g FS, QFN-44</td>
</tr>
<tr>
<td>LGA</td>
<td>LIS3L02AL</td>
<td>Analog 2g FS, LGA-8, 5x5x1.5 mm</td>
</tr>
<tr>
<td></td>
<td>LIS302ALB</td>
<td>Analog 2g FS, LGA-14, 3x5x0.9 mm</td>
</tr>
<tr>
<td></td>
<td>LIS302ALK</td>
<td>Analog 2g FS, LGA-14, 3x5x0.9 mm</td>
</tr>
<tr>
<td></td>
<td>LIS302DL*</td>
<td>SPI/FC, PD, 2INT 2g/8g FS, LGA-14 3x5x0.9 mm</td>
</tr>
<tr>
<td></td>
<td>LIS202DL*</td>
<td>SPI/FC, PD, 2INT 2g/8g FS, LGA-14 3x5x0.9 mm</td>
</tr>
</tbody>
</table>

Sensors
- **Analog Output**
- **Digital**
<table>
<thead>
<tr>
<th>Evaluation Kit Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVAL-MKI001V1</td>
</tr>
<tr>
<td>STEVAL-MKI002V1</td>
</tr>
<tr>
<td>STEVAL-MKI003V1</td>
</tr>
<tr>
<td>STEVAL-MKI004V1</td>
</tr>
<tr>
<td>STEVAL-MKI005V1</td>
</tr>
<tr>
<td>STEVAL-MKI006V1</td>
</tr>
<tr>
<td>STEVAL-MKI007V1</td>
</tr>
<tr>
<td>STEVAL-MKI008V1</td>
</tr>
<tr>
<td>STEVAL-MKI009V1</td>
</tr>
<tr>
<td>STEVAL-MKI010V1</td>
</tr>
<tr>
<td>STEVAL-MKI011V1</td>
</tr>
<tr>
<td>STEVAL-MKI012V1</td>
</tr>
</tbody>
</table>