STM32L and STM8L MCU families

Ultra-low-power EnergyLite™ 32-bit and 8-bit microcontrollers
STMicroelectronics ultra-low-power microcontroller
EnergyLite™ platform

ST has identified an optimal balance between high performance and ultra-low power, through different modes, in order to optimize the energy consumed by your applications over their whole life.

Commitment to ultra-low power

Lower power consumption is increasingly required in all types of market applications. Several parameters are driving this demand: new national and international norms to reduce power consumption, the increasing number of battery-powered applications, development of new green technologies, or simply the need to be environmentally friendly.

To better serve this market, STMicroelectronics is developing a platform of ultra-low-power MCUs as a natural extension to the existing successful STM8S and STM32F families.

This platform for the 8-bit STM8L and 32-bit STM32L MCUs is based on a proprietary 130 nm ultra-low-leakage process technology.

The STM8L and STM32L offer specific features for ultra-low-power applications, such as advanced ultra-low-power modes, optimized dynamic run consumption and specific safety features. The balance between high performance and ultra-low power using different modes ensures optimal energy consumption, whatever your application, and this throughout its life.

ST’s commitment to ultra-low power is total, with ongoing development of future technologies and devices that will complement the existing portfolio of ultra-low-power MCUs to give our customers access to a new level of power saving.

8/32-bit ultra-low-power range

STMicroelectronics’ ultra-low-power portfolio includes the full range of 8-bit to 32-bit MCUs, and so addresses most applications requiring reduced current consumption, from ultra-simple, cost-optimized feature needs to complex, high-performance requirements.

Key features

- Platform for 8-bit STM8L and 32-bit STM32L MCUs
- ST 130 nm ultra-low-leakage process technology – speed and power consumption are independent of MCU power supply
- Ultra-low-power modes: down to 270 nA
- Ultra-low voltage supply: 1.65 to 3.6 V
- Advanced analog functions down to 1.8 V
- Fast wake up
- On-board security and safety features for critical applications
- 33.3 DMIPS at 32 MHz (STM32L) and up to 16 MIPS at 16 MHz (STM8L)
Ultra-low-power product lines

Common core peripherals and architecture:

- **STM32L151/STM32L152**
 - Cortex-M3 @ 32 MHz
 - Up to 128-Kbyte Flash
 - Up to 16-Kbyte SRAM
 - Main osc. input 1-24 MHz
 - Data EEPROM
 - RTC with 32 kHz oscill.
 - DMA
 - 12-bit ADC (1 µs) Temp. sensor
 - 2x 12-bit DAC
 - LCD 8x40
 - ULF
 - MPU
 - ETM
 - USB FS

- **STM8L151/STM8L152**
 - STM8 core @ 16 MHz
 - Up to 32-Kbyte Flash
 - Up to 2-Kbyte SRAM
 - Main osc. input 16 MHz
 - Data EEPROM
 - RTC with 32 kHz oscill.
 - DMA
 - 12-bit ADC (1 µs) Temp. sensor
 - 12-bit DAC
 - LCD 4x28

- **STM8L101**
 - STM8 core @ 16 MHz
 - Up to 8-Kbyte Flash
 - Up to 1.5-Kbyte SRAM

Abbreviations:
- BOR: Brown-out reset
- ETM: Embedded trace unit
- MPU: Memory protection unit
- MSI: Multi speed internal oscillator
- Osc.: Oscillator
- POR: Power-on reset
- PDR: Power-down reset
- PVD: Programmable voltage detector
- ULP: Ultra-low-power
- RTC: Real-time clock

Ultra-low-power portfolio

Flash size (bytes)

384 K	STM32L152RD	STM32L152VD	STM32L152ZD
256 K	STM32L151RD	STM32L151VD	STM32L151ZD
128 K	STM32L152C8	STM32L152VB	STM32L151VB
64 K	STM32L151C8	STM32L151RB	STM32L151VB
32 K	STM32L152C8	STM32L152RB	STM32L152VB
16 K	STM8L152C8	STM8L152RB	STM8L152M8
8 K	STM8L151C8	STM8L151RB	STM8L151M8
4 K	STM32L152C6	STM32L152R6	STM32L152V6

Pin count

- 20 pins: TSSOP/QFN
- 28 pins: QFN/WLCSP
- 32 pins: LQFP/QFN
- 48 pins: LQFP/QFN
- 64 pins: LQFP/BGA
- 80*100 pins: LQFP/BGA
- 144 pins: LQFP/BGA

Note: *80 pins for STM8L15x only

Legend:
- STM8L (production/sampling): Available in Q1/2011
- STM32L (production/sampling): Available in Q3/2010
- STM32 (production/sampling): Available in Q4/2010
Features and benefits

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra-low-power proprietary 130 nm technology</td>
<td>Speed and power consumption independent of MCU power supply, ultra-low</td>
</tr>
<tr>
<td>leakage</td>
<td></td>
</tr>
<tr>
<td>Ultra-low-power design (clock gating, low-power Flash with power-off</td>
<td>Reduced overall run and low-power mode current consumption by turning</td>
</tr>
<tr>
<td>capability, voltage scaling)</td>
<td>off clocks of unused peripherals or Flash</td>
</tr>
<tr>
<td></td>
<td>Optimized power consumption in run mode according to the performance</td>
</tr>
<tr>
<td></td>
<td>required</td>
</tr>
<tr>
<td>Very low consumption/performance ratio</td>
<td>Very low power consumption over time to give energy saving and extended</td>
</tr>
<tr>
<td></td>
<td>battery life</td>
</tr>
<tr>
<td>Sub 1 µA hardware RTC and AWU system unit</td>
<td>Ultra-low-power modes for applications requiring regular wake up</td>
</tr>
<tr>
<td>Range of low-power modes (up to 6)</td>
<td>Suitable for many applications from complete switch off to continuous</td>
</tr>
<tr>
<td></td>
<td>monitoring at ultra-low frequency</td>
</tr>
<tr>
<td>Advanced and flexible clock system (multiple internal and external</td>
<td>Switch and adjust frequency and clock sources on the fly depending on</td>
</tr>
<tr>
<td>clock sources)</td>
<td>application needs</td>
</tr>
<tr>
<td>Direct memory access on board (up to 7-channel DMA)</td>
<td>Autonomy for peripherals, independent from core; can switch off Flash</td>
</tr>
<tr>
<td></td>
<td>memory and CPU (large current consumption contributors) while keeping</td>
</tr>
<tr>
<td></td>
<td>peripherals active</td>
</tr>
<tr>
<td>Ultra-fast wake up from lowest low-power mode</td>
<td>Fast switching from static and dynamic power modes</td>
</tr>
<tr>
<td>Power supply V_{DD} min: 1.65 V (STM32L and STM8L101 only)</td>
<td>Fitting applications supplied with external 1.8 V +/-10% regulator</td>
</tr>
<tr>
<td>Analog functional down to 1.8 V, programming down to 1.65 V</td>
<td>Full functionality over the complete V_{DD} range</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultra-low-power and ultra-safe features (POR, PDR, BOR, PVD, unique ID,</td>
<td>Integrated safety and security for applications; user data confidentiality/</td>
</tr>
<tr>
<td>backup clock, Flash protection, Flash with error code correction (ECC,</td>
<td>reliability</td>
</tr>
<tr>
<td>dual watchdog, and more)</td>
<td></td>
</tr>
</tbody>
</table>

Targeted applications

- **Medical**
 - Glucose meters
 - Insulin pumps
 - Diabetes care
 - Blood pressure monitors
 - Cholesterol electronic monitors
 - Patient monitoring
 - Heart monitors

- **Metering**
 - Electricity meters
 - Gas meters
 - Water meters
 - Scales
 - Heat meters

- **GP portable devices**
 - Mobile accessories
 - 3D mouse and remote controls
 - Gaming
 - GPS watches
 - Sports equipment
 - Games and toys

- **Alarm systems**
 - Central processor units
 - Wired sensors
 - Wireless sensors
 - Door locks
STM8L ultra-low-power MCU family

STMicroelectronics proposes an ultra-low-power family of MCUs based on the 8-bit and 32-bit cores. The STM8L MCU family, based on the STM8 proprietary core, is the entry point of the platform.

The STM8L family combines high performance and ultra-low power consumption using a new proprietary ultra-low leakage process and optimized architecture. This family is declined in three different lines, making the STM8L an optimal family to support many applications with special care on power savings.

The STM8L101 is the entry point for the ultra-low-power 8-bit portfolio. It is cost optimized and offers a high level of integration in an ultra-small footprint. The STM8L151 is the feature-rich 8-bit solution. The STM8L152 has an additional segment LCD driver compared to the STM8L151.

STM8L family description

You can upgrade to a higher or downgrade to a lower memory size or use a different package across lines without changing your initial layout or software.

- STM8 16 MHz CPU
- 4 to 32 Kbytes of embedded Flash, up to 2 Kbytes of SRAM
- Three lines: pin-to-pin, software and peripheral compatibility across lines
- Supply voltage: 1.8 to 3.6 V (down to 1.65 V at power down)
- Up to four ultra-low-power modes: down to 350 nA with SRAM and context retention
- Run mode dynamic consumption down to 150 μA/MHz
- State-of-the-art digital and analog peripherals
- -40 to +85 °C, or up to 125 °C operating temperature range
- Free touch-sensing library

STM8L block diagram

STM8L enriches ultra-low-power platform and STM8 portfolio

The STM8L is part of both our ultra-low-power platform and the STM8S portfolio. The STM8L microcontroller, powered by the STM8 core, complements the STM8S portfolio with lower overall power consumption, new ultra-low-power modes (low-power run, low-power wait), new peripherals (RTC, LCD, comparators and 12-bit ADC).

Note:
*STM8L15x only

Abbreviations:
- AWU: Auto wake-up from halt
- BOR: Brown out reset
- BOR: Brown out reset
- PC: Serial peripheral interface
- PDR: Power down reset
- PVD: Programmable voltage detector
- POR: Power on reset
- SPI: Serial synchronous communication
- RTC: Real time clock
- SWIM debug module

STM8L15x only

STM8101

STM815x

STM8152

STM8151

STM8150
STM8L: power saving features and benefits

The STM8L lines embed up to 4 different ultra-low-power modes to offer users a high level of flexibility for their applications. In addition, the dynamic run consumption has been optimized.

Supply monitoring and resets
- Full reset circuitry, supply monitoring
- Power-on reset/power-down reset, permanently enabled (zero power)
- Brown-out detection (BOR) can be on or off in low-power mode
- Programmable voltage detection – can be on or off
- Extended battery lifetime down to 1.65 V
- BOR complies with all V_DD rise/fall times, so no constraints on power supply shape

Up to four ultra-low-power modes

The following modes are ideal for applications that need constant monitoring with a sub-6 μA budget.

- **Low-power run mode**: the CPU is still running. Execution is done from RAM with a low-speed oscillator (RTC or internal). Consumption is less than 6 μA typical.
- **Low-power wait**: offers the capability to keep the RTC and a few other peripherals active (such as the timer) with a consumption of about 3 μA typical. The CPU is off. The Flash is switched off and the regulator is put in ultra-low-power mode, the CPU is stopped, the RTC and peripherals can be activated.

The following modes are ideal for applications that need low-power modes with sub-1.2 μA budget.

- **Active halt mode**: the CPU, main clocks and peripherals are off. The RTC can be still running. Wake up can be done through an interrupt on the peripherals. SRAM and context are kept.
- **Halt mode**: the CPU, main clocks and peripherals are off, the RTC is off, SRAM and context are kept.

STM8L15x consumption values

<table>
<thead>
<tr>
<th>Typical @ 25 °C</th>
<th>Dynamic Run From Flash</th>
<th>Dynamic Run From RAM</th>
<th>Low-power Run @ 32 kHz</th>
<th>Low-power Wait @ 32 kHz</th>
<th>Active Halt with RTC</th>
<th>Halt</th>
</tr>
</thead>
<tbody>
<tr>
<td>192 μA/MHz</td>
<td>90 μA/MHz</td>
<td>5.1 μA</td>
<td>3.0 μA</td>
<td>1.2 μA</td>
<td>0.4 μA</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- POR/PDR on
- RAM content preserved
- BOR option at 2.4 μA
- Start up time from active Halt 5 μs
- Run and Wait consumption values are independent of V_DD
- Active Halt and Halt values measured at V_DD = 1.8 V

STM8L ultra-low power consumption values

<table>
<thead>
<tr>
<th>Operating mode</th>
<th>STM8L101 Typ 1.8 V − 3.3 V, 25 °C</th>
<th>STM8L15x Typ 1.8 V, 25 °C</th>
<th>STM8L15x Typ 3.0 V, 25 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run from Flash mode</td>
<td>150 μA/MHz</td>
<td>192 μA/MHz</td>
<td>192 μA/MHz</td>
</tr>
<tr>
<td>Run from RAM mode</td>
<td>75 μA/MHz</td>
<td>90 μA/MHz</td>
<td>90 μA/MHz</td>
</tr>
<tr>
<td>Low-power Run from RAM</td>
<td>n.a</td>
<td>5.1 μA</td>
<td>5.1 μA</td>
</tr>
<tr>
<td>Low-power Wait</td>
<td>n.a</td>
<td>3.0 μA</td>
<td>3.0 μA</td>
</tr>
<tr>
<td>Active Halt with RTC</td>
<td>n.a</td>
<td>1.2 μA</td>
<td>1.35 μA</td>
</tr>
<tr>
<td>Active Halt with AWU</td>
<td>0.8 μA</td>
<td>1 μA</td>
<td>1 μA</td>
</tr>
<tr>
<td>Halt mode</td>
<td>0.35 μA</td>
<td>0.4 μA</td>
<td>0.4 μA</td>
</tr>
</tbody>
</table>

STMTouch open library

STMicroelectronics’ touch-sensing software library is a complete, free-of-charge source-code solution to transform any 8-bit STM8L microcontroller into a capacitive touch-key controller. Designers can combine the touch-sensing function with multiple configurations (touch keys, wheels, sliders) and the traditional MCU features (communication, LED control, beeper, LCD control). The touch-sensing software library is part of the application firmware.
STM32L ultra-low-power MCU family

The STM32L MCU family, based on the Cortex™-M3 core, extends the ultra-low-power portfolio in performance, features, memory size and package pin count. The STM32L family combines very high performance and ultra-low power consumption, as a result of our proprietary ultra-low leakage process, shared with the STM8L family, and optimized architecture. The STM32L family is declined in two different lines, so optimizing the STM32F family for many applications requiring performance with special care on power savings.

STM32L family description

- ARM Cortex-M3 32 MHz CPU
- 64 to 128 Kbytes of embedded Flash, 16 Kbytes of RAM and up to 4 Kbytes of SRAM
- Two lines: pin-to-pin, software and peripheral compatibility across lines
- Pin-to-pin compatibility with STM32F series (except V_BAT, not present on STM32L)
- Ultra-low energy consumption: down to 185 μA/DMIPS
- Supply voltage: 1.8 to 3.6 V with BOR (down to 1.65 V at power down); 1.65 to 3.6 V without BOR
- Six ultra-low-power modes: down to 270 nA
- Ultra-low-power dynamic modes: low-power run down to 10.4 μA; low-power sleep down to 6.1 μA with one timer
- Economical Run mode consumption down to 230 μA/MHz from Flash at zero wait states with dynamic voltage scaling (3 ranges)
- Rich set of high-end analog and digital peripherals
- -40 to +85 °C operating temperature range

STM32L enriches ultra-low-power platform and STM32 portfolio

The STM32L15x extends both our ultra-low-power platform and the STM32 portfolio. The STM32L microcontroller, powered by the ARM Cortex-M3, offers more features and performance compared to the STM8L. It complements the STM32 portfolio with lower overall power consumption, new ultra-low-power modes (low-power run, low-power sleep), new peripherals (LCD, comparators), new ultra-low-power architecture (voltage scaling, ultra-low-power MSI oscillator). The pin-to-pin compatibility between the STM32L and STM32F gives greater flexibility to the application designer and supports a strategy based on a unique platform. The STM32L152 has an additional segment LCD driver compared to the STM32L151.
STM32L: power saving features and benefits

The STM32L lines propose 6 different ultra-low-power modes to offer users a high level of flexibility depending on their application. In addition, the dynamic run consumption has been optimized.

Up to six ultra-low-power modes

- **Low-power run mode**: the CPU is still running. Execution is done from RAM with a low-speed oscillator (RTC or internal). Consumption is 10.4 μA typical.

- **Low-power sleep mode**: offers the possibility of keeping the RTC and a few other peripherals active (such as the timer) with a consumption of 6.1 μA typical with one timer activated. The CPU is off. The Flash is switched off and the regulator is put into ultra-low-power mode, the CPU is stopped, the RTC and peripherals can be activated. The 2 modes above are ideal for applications that need constant monitoring.

- **Stop modes (2 modes)**: the CPU, main clocks and peripherals are off. The RTC can still be running or not (2 modes). Wake up can be done through an interrupt on the peripherals. SRAM and context are kept.

- **Standby modes (2 modes)**: the CPU, main clocks and peripherals are off. The RTC can still be running or not (2 modes). Backup registers are preserved. Wakeup can be done through wake-up pins.

Supply monitoring and resets

- Full reset circuitry, supply monitoring
- Power-on reset/power-down reset, permanently enabled (zero power)
- Brown-out detection (BOR) can be on or off in low-power modes
- Programmable voltage detection – can be on or off
- Extended battery lifetime down to 1.65 V
- BOR complies with all \(V_{DD} \) rise/fall times, so no constraints on power supply shape. When BOR is not activated, the STM32L starts at \(V_{DD} = 1.65 \) V.

STM32L ultra-low power consumption values

<table>
<thead>
<tr>
<th>Operating mode</th>
<th>STM32L15x Typ 1.8 V, 25 °C</th>
<th>STM32L15x Typ 3 V, 25 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run from FLASH mode 1, 2, 3</td>
<td>286, 265, 230 μA/MHz</td>
<td>286, 265, 230 μA/MHz</td>
</tr>
<tr>
<td>Run from RAM mode 1, 2, 3</td>
<td>270, 218, 186 μA/MHz</td>
<td>270, 218, 186 μA/MHz</td>
</tr>
<tr>
<td>Low-power Run from RAM</td>
<td>10.4 μA</td>
<td>10.4 μA</td>
</tr>
<tr>
<td>Low-power Sleep + 1 timer</td>
<td>6.1 μA</td>
<td>6.1 μA</td>
</tr>
<tr>
<td>Stop with RTC</td>
<td>1.3 μA</td>
<td>1.6 μA</td>
</tr>
<tr>
<td>Stop without RTC</td>
<td>0.43 μA</td>
<td>0.46 μA</td>
</tr>
<tr>
<td>Standby with RTC</td>
<td>1.0 μA</td>
<td>1.3 μA</td>
</tr>
<tr>
<td>Standby without RTC</td>
<td>0.27 μA</td>
<td>0.3 μA</td>
</tr>
</tbody>
</table>

Note: these values are preliminary
STM8L device summary

<table>
<thead>
<tr>
<th>Part number</th>
<th>Program memory</th>
<th>RAM (bytes)</th>
<th>Data EEPROM (bytes)</th>
<th>A/D inputs</th>
<th>Timer functions</th>
<th>Serial interface</th>
<th>LVD levels</th>
<th>I/Os (high current)</th>
<th>Packages</th>
<th>Supply voltage (V)</th>
<th>Special features</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM8L101F2</td>
<td>● 4</td>
<td>1.5 K</td>
<td>-</td>
<td>2x16-bit (4/4/4)</td>
<td>1x8-bit (0/0/0)</td>
<td>1xSPI, 1xI2C, 1xUART, 1x1xRTX</td>
<td>- 18(16)</td>
<td>TSSOP20, UQFN20 (3x)</td>
<td>1.65 to 3.6</td>
<td>16 MHz and 38 kHz internal RC, APU, reset system, 2x comparators, touch sensing FW library</td>
<td></td>
</tr>
<tr>
<td>STM8L101F3</td>
<td>● 8</td>
<td>1.5 K</td>
<td>-</td>
<td>2x16-bit (4/4/4)</td>
<td>1x8-bit (0/0/0)</td>
<td>1xSPI, 1xI2C, 1xUART, 1x1xRTX</td>
<td>- 18(16)</td>
<td>TSSOP20, UQFN20 (3x)</td>
<td>1.65 to 3.6</td>
<td>16 MHz and 38 kHz internal RC, APU, reset system, 2x comparators, touch sensing FW library</td>
<td></td>
</tr>
<tr>
<td>STM8L101G2</td>
<td>● 4</td>
<td>1.5 K</td>
<td>-</td>
<td>2x16-bit (4/4/4)</td>
<td>1x8-bit (0/0/0)</td>
<td>1xSPI, 1xI2C, 1xUART, 1x1xRTX</td>
<td>- 26(24)</td>
<td>UQFN20P (4x4)</td>
<td>1.65 to 3.6</td>
<td>16 MHz and 38 kHz internal RC, APU, reset system, 2x comparators, touch sensing FW library</td>
<td></td>
</tr>
<tr>
<td>STM8L101G3</td>
<td>● 8</td>
<td>1.5 K</td>
<td>-</td>
<td>2x16-bit (4/4/4)</td>
<td>1x8-bit (0/0/0)</td>
<td>1xSPI, 1xI2C, 1xUART, 1x1xRTX</td>
<td>- 26(24)</td>
<td>UQFN20P (4x4)</td>
<td>1.65 to 3.6</td>
<td>16 MHz and 38 kHz internal RC, APU, reset system, 2x comparators, touch sensing FW library</td>
<td></td>
</tr>
<tr>
<td>STM8L101K3</td>
<td>● 8</td>
<td>1.5 K</td>
<td>-</td>
<td>2x16-bit (4/4/4)</td>
<td>1x8-bit (0/0/0)</td>
<td>1xSPI, 1xI2C, 1xUART, 1x1xRTX</td>
<td>- 30(28)</td>
<td>LQFP32 (7x7), UQFN32 (5x5)</td>
<td>1.65 to 3.6</td>
<td>16 MHz and 38 kHz internal RC, APU, reset system, 2x comparators, touch sensing FW library</td>
<td></td>
</tr>
</tbody>
</table>

Note: available in Q3/2010 for 64 Kbytes

STM32L device summary

<table>
<thead>
<tr>
<th>Part number</th>
<th>Program memory</th>
<th>RAM (bytes)</th>
<th>Data EEPROM (bytes)</th>
<th>A/D inputs</th>
<th>Timer functions</th>
<th>Serial interface</th>
<th>LVD levels</th>
<th>I/Os (high current)</th>
<th>Packages</th>
<th>Supply voltage (V)*</th>
<th>Special features</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM32L151CB</td>
<td>● 64</td>
<td>10 K</td>
<td>4 K</td>
<td>16x12-bit</td>
<td>8x16-bit (16/16)</td>
<td>2xSPI, 2xI2C, 3xUART (16), 1xUSB</td>
<td>7 37(37)</td>
<td>LQFP48/ QFN48</td>
<td>1.8 to 3.6</td>
<td>USI, voltage scaling, MPU, LDP MS, EEPROM, hardrare RTC, 6 low-power modes, 2x comparators, reset system + BOR</td>
<td></td>
</tr>
<tr>
<td>STM32L151CB</td>
<td>● 128</td>
<td>16 K</td>
<td>4 K</td>
<td>16x12-bit</td>
<td>8x16-bit (16/16)</td>
<td>2xSPI, 2xI2C, 3xUART (16), 1xUSB</td>
<td>7 37(37)</td>
<td>LQFP48/ QFN48</td>
<td>1.8 to 3.6</td>
<td>USI, voltage scaling, MPU, LDP MS, EEPROM, hardrare RTC, 6 low-power modes, 2x comparators, reset system + BOR</td>
<td></td>
</tr>
<tr>
<td>STM32L151R8</td>
<td>● 64</td>
<td>10 K</td>
<td>4 K</td>
<td>20x12-bit</td>
<td>8x16-bit (16/16)</td>
<td>2xSPI, 2xI2C, 3xUART (16), 1xUSB</td>
<td>7 51(51)</td>
<td>LQFP48/ BG44A4</td>
<td>1.8 to 3.6</td>
<td>LCD segment controller, MPU, LDP MS, EEPROM, hardrare RTC, 12-bit OAC, 16 MHz and 38 kHz internal RC, 2x comparators, reset system + BOR</td>
<td></td>
</tr>
<tr>
<td>STM32L151R8</td>
<td>● 128</td>
<td>16 K</td>
<td>4 K</td>
<td>20x12-bit</td>
<td>8x16-bit (16/16)</td>
<td>2xSPI, 2xI2C, 3xUART (16), 1xUSB</td>
<td>7 51(51)</td>
<td>LQFP48/ BG44A4</td>
<td>1.8 to 3.6</td>
<td>LCD segment controller, MPU, LDP MS, EEPROM, hardrare RTC, 12-bit OAC, 16 MHz and 38 kHz internal RC, 2x comparators, reset system + BOR</td>
<td></td>
</tr>
<tr>
<td>STM32L151V6</td>
<td>● 64</td>
<td>10 K</td>
<td>4 K</td>
<td>24x12-bit</td>
<td>8x16-bit (16/16)</td>
<td>2xSPI, 2xI2C, 3xUART (16), 1xUSB</td>
<td>7 83(83)</td>
<td>LQFP100/ BG100A0</td>
<td>1.8 to 3.6</td>
<td>LCD segment controller, MPU, LDP MS, EEPROM, hardrare RTC, 12-bit OAC, 16 MHz and 38 kHz internal RC, 2x comparators, reset system + BOR</td>
<td></td>
</tr>
<tr>
<td>STM32L151V6</td>
<td>● 128</td>
<td>16 K</td>
<td>4 K</td>
<td>24x12-bit</td>
<td>8x16-bit (16/16)</td>
<td>2xSPI, 2xI2C, 3xUART (16), 1xUSB</td>
<td>7 83(83)</td>
<td>LQFP100/ BG100A0</td>
<td>1.8 to 3.6</td>
<td>LCD segment controller, MPU, LDP MS, EEPROM, hardrare RTC, 12-bit OAC, 16 MHz and 38 kHz internal RC, 2x comparators, reset system + BOR</td>
<td></td>
</tr>
</tbody>
</table>

Note: *Contact ST sales office for part numbers with supply voltage: 1.65 to 3.6 V (without BOR)
STM8L development tools

A complete set of hardware and software is available to help designers evaluate the STM8L features and to allow fast application development.

STM8L embedded firmware

STM8L firmware libraries: complete packages consisting of device drivers for all the standard device peripherals. Each device driver includes a set of functions covering full peripheral functionality.

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Starter kit</th>
<th>Evaluation board</th>
<th>In-circuit debugger</th>
<th>Emulator</th>
<th>3rd-party programmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM8L101</td>
<td>-</td>
<td>STM8L101-EVAL</td>
<td>ST-LINK STX-RLINK</td>
<td>STICE-SYS005</td>
<td>BP Microsystems Data I/O Dataman Elnec HI-L0 Phyton RK-System Segger SMH Technologies System General Xeltek</td>
</tr>
<tr>
<td>STM8L15x</td>
<td>STM8L-DISCOVERY STM8L1526PRIMER</td>
<td>STM8L1526-EVAL</td>
<td>ST-LINK STX-RLINK</td>
<td>STICE-SYS007</td>
<td>BP Microsystems Data I/O Dataman Elnec HI-L0 Phyton RK-System Segger SMH Technologies System General Xeltek</td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>IDE</th>
<th>Description</th>
<th>Supplier</th>
<th>Supplier URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM8L15x</td>
<td>STM8L-DISCOVERY STM8L1526PRIMER STM8L1526-EVAL</td>
<td>STMicroelectronics</td>
<td>www.st.com/mcu</td>
</tr>
<tr>
<td>IAR EWSTM8</td>
<td>RIDE Raisonance, RIDE with RBuilder and Rflasher, free</td>
<td>Raisonance</td>
<td>www.raisonance.com</td>
</tr>
<tr>
<td>IAR EWSTM8</td>
<td>RIDE Raisonance, RIDE with RBuilder and Rflasher, free</td>
<td>Raisonance</td>
<td>www.raisonance.com</td>
</tr>
<tr>
<td>Compiler</td>
<td>Cosmic C Compiler, free up to 32 Kbytes</td>
<td>Cosmic Software</td>
<td>www.cosmic-software.com</td>
</tr>
<tr>
<td>Compiler</td>
<td>IAR C compiler, free up to 8 Kbytes</td>
<td>IAR</td>
<td>www.iar.com</td>
</tr>
<tr>
<td>Compiler</td>
<td>Raisonance C compiler, free up to 32 Kbytes</td>
<td>Raisonance</td>
<td>www.raisonance.com</td>
</tr>
</tbody>
</table>

IDE

- ST STM8L101-IDE
- IAR EWSTM8
- RIDE Raisonance

Compiler

- Cosmic C Compiler
- IAR C compiler
- Raisonance C compiler
Evaluation boards

STM8L101 LCD board: STEVAL-IAS003V1
STM8L101 low-power demonstrator with software driven LCD. Featuring 1.25 µA consumption at 36 MHz refresh rate with a 3-digit LCD glass driven by software, this tool highlights the optimized power consumption with the STM8L101. It is also provided at a very low cost.

STM8L15x low-power board: STM8L15LPBOARD
Ultra-low-power and low-cost board for STM8L15x to demonstrate the different low-power modes and functionalities and provide a means to measure current sourced by the battery while paused in each of the modes.

STM8L101-EVAL and STM8L1526-EVAL
Complete hardware emulation platforms with the STM8L101 or the STM8L152, implementing the full range of device peripherals and features.

Starter kits

STM8L-DISCOVERY
The STM8L-Discovery kit is the cheapest and quickest way to discover the STM8L and its low-power capabilities. It includes a 6-digit LCD display, 2 LEDs, 1 user button, current measurement and the embedded debugger ST-LINK.

STM8L1526PRIMER
Play, explore and develop applications on the STM8L Primer with Raisonance toolset, free demos and an online community at www.stm8circle.com to stimulate creative designs.
STM32L development tools
A complete set of hardware and software is available to help designers evaluate the STM32L features and to allow fast application development.

STM32L embedded firmware
STM32L firmware library: complete package consisting of device drivers for all the standard device peripherals.
Each device driver includes a set of functions covering full peripheral functionality.

Third-party development solutions
Choose from a full range of solutions that offer start-to-finish control of application development from a single environment that includes development environment, C/C++ compiler and in-circuit emulator. Contact ST sales office for availability.

<table>
<thead>
<tr>
<th>Evaluation boards</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM32L15x low-power board</td>
</tr>
<tr>
<td>Ultra-low-power and low-cost board for STM32L15x to demonstrate all different low-power modes and functionalities and provide a means to measure current sourced by the battery while paused in each of the modes.</td>
</tr>
<tr>
<td>Contact ST sales office for availability.</td>
</tr>
</tbody>
</table>

| **STM32L152-EVAL** |
| Complete hardware emulation platforms with the STM32L152, implementing the full range of device peripherals and features. |
| Contact ST sales office for availability. |