

VPT30-2800T Series

HIGH RELIABILITY COTS DC-DC CONVERTERS

DESCRIPTION

The VPT30 series of isolated COTS DC-DC converters is a cost effective solution for many demanding high reliability applications. A wide input voltage range accommodates nominal 28V inputs including avionics, mobile, ground systems, and other applications. Low input and output ripple, fixed operating frequency, and companion EMI filters simplify system design and compliance. A proven design heritage, no optoisolators and a rugged all metal package ensure long term reliability.

The VPT30 series is intended for harsh environments including severe vibration, shock and temperature cycling. Testing is to JESD22, MIL-STD-810, and MIL-STD-883.

These converters are designed and manufactured in the USA in a facility certified to ISO9001, J-STD-001 and IPC-A-610.

This product may incorporate one or more of the following U.S. patents:

5,784,266 5,790,389 5,963,438 5,999,433 6,005,780 6,084,792 6,118,673

FEATURES

- High Reliability at Low Cost
- 30 Watts Output Power
- Three Independent Fully Isolated Outputs
- Wide Input Voltage Range: 9 to 80 Volts per MIL-STD-704 and MIL-STD-1275
- High Input Transient Voltage: 100 Volts for 1 sec per MIL-STD-1275
- Each Output can be configured as a Positive or Negative Output
- Zero Cross Regulation
- No Minimum Load Requirement
- Input Undervoltage Lockout
- Fixed Frequency
- Output Soft Start
- Short Circuit Protection
- Magnetic Feedback, no Optoisolators
- Wide Temperature Range, -55°C to 100°C
- Internally Conformal Coated
- Six Sided Non-Hermetic Rugged Metal Enclosure
- Meets MIL-STD-461 Revisions C, D, E and F EMC Requirements When Used With VPT's EMI Filters

Figure 1 – VPT30-2800T DC-DC Converter (Not To Scale)

Sales Information: Phone: (425) 353-3010 Fax: (425) 353-4030 E-mail: vptsales@vpt-inc.com

VPT30-2800T Series

SPECIFICATIONS (T_{CASE} = -55°C to +100°C, V_{IN} = +28V ± 5%, Full Load, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS			
Input Voltage (Continuous)	80 V _{DC}	Junction Temperature Rise to Case	24°C
Input Voltage (Transient, 1 sec)	100 Volts	Storage Temperature	-55°C to +125°C
Output Power	30 Watts	Lead Solder Temperature (10 seconds)	300°C
Power Dissipation ⁶ (Full Load, T _{CASE} = +100°C)	9 Watts	Weight (Maximum)	50 Grams

Parameter	Conditions	V	PT30-280	DT T	Units
Farameter	Conditions	Min	Тур	Max	Ullits
STATIC					
INPUT	Continuous	9	28	80	V
Voltage ^{4,5}	Transient, 1 sec	-	-	100	V
Current	Inhibited	-	1	5	mA
Current	No Load	-	90	130	mA
Ripple Current ⁶	Full Load, 20Hz to 10MHz	-	30	90	mA
Inhibit Pin Input ⁴		0	-	1.5	V
Inhibit Pin Open Circuit Voltage ⁴		9.0	11.0	13.0	V
UVLO Turn On		9.8	-	11.0	V
UVLO Turn Off ⁴		8.0	-	8.9	V
OUTPUT POWER		0	-	30	W
EFFICIENCY ⁶	Full Load	77	82	-	%
LOAD FAULT POWER DISSIPATION	Short Circuit	-	2	5	W
SWITCHING FREQUENCY	Input	400	500	550	kHz
SWITCHING FREQUENCY	Output	325	400	475	kHz
ISOLATION Input / Output / Case	500 V _{DC}	100	-	-	МΩ
ISOLATION Output / Output	100V _{DC}	20	-	-	ΜΩ
MTBF (MIL-HDBK-217F)	GM @ T _C = 55°C		672		kHrs

Parameter		Conditions	3.3V Output			5V Output			Units
Parameter	Parameter		Min	Тур	Max	Min	Тур	Max	Ullits
STATIC									
OUTPUT	V_{OUT}	T _{CASE} = 25°C	3.25	3.30	3.35	4.92	5.00	5.08	V
Voltage		T _{CASE} = -55°C to +100°C	3.21	3.30	3.38	4.87	5.00	5.13	V
Power ³			0	-	10	0	-	15	W
Current ³	V_{OUT}		0	-	3.0	0	-	3.0	Α
Ripple Voltage	V_{OUT}	Full Load, 20Hz to 10MHz	-	40	100	-	40	100	mV_{p-p}
Line Regulation ⁶	V_{OUT}	V _{IN} = 9V to 80V	-	2	20	-	2	20	mV
Load Regulation	V_{OUT}	No Load to Full Load	-	3	30	-	3	30	mV
CAPACITIVE LOAD ⁴			-	-	1000	-	-	1000	μF

See notes on next page.

VPT30-2800T Series

SPECIFICATIONS ($T_{CASE} = -55$ °C to +100°C, $V_{IN} = +28V \pm 5$ %, Full Load, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS

Input Voltage (Continuous) $80 V_{DC}$ Junction Temperature Rise to Case 24°C Input Voltage (Transient, 1 sec) -55°C to +125°C 100 Volts Storage Temperature **Output Power** 30 Watts Lead Solder Temperature (10 seconds) 300°C Power Dissipation⁶ (Full Load, T_{CASE} = +100°C) 9 Watts Weight (Maximum) 50 Grams

Parameter		Conditions	3.3V Output		5V Output			Units	
raianietei		Conditions	Min	Тур	Max	Min	Тур	Max	Ullits
DYNAMIC									
Load Step Output Transient	V_{OUT}	Half Load to Full Load	-	140	280	-	100	200	mV_{PK}
Load Step Recovery ²		Hall Load to Full Load	-	120	240	-	90	180	μSec
Line Step Output Transient ^{4,6}	V _{OUT}	V _{IN} = 16V to 40V	-	50	100	-	60	120	mV_{PK}
Line Step Recovery ^{2,4,6}		V _{IN} = 16V to 40V	-	50	100	-	50	100	μSec
Turn On Delay ⁶	V _{OUT}	V _{IN} = 0V to 28V	-	14	20	-	14	20	mSec
Turn On Overshoot ⁶		V _{IN} = UV (0 20V	-	0	15	-	0	25	mV_{PK}

Parameter		Conditions	1	2V Outpu	ıt	1	5V Outpu	ıt	Units
		Conditions	Min	Тур	Max	Min	Тур	Max	
STATIC									
OUTPUT	V_{OUT}	T _{CASE} = 25°C	11.82	12.0	12.18	14.77	15.0	15.23	V
Voltage	V_{OUT}	T_{CASE} = -55°C to +100°C	11.70	12.0	12.30	14.62	15.0	15.38	V
Power ³			0	-	15	0	-	15	W
Current ³	V _{OUT}		0	-	1.25	0	-	1.0	Α
Ripple Voltage	V_{OUT}	Full Load, 20Hz to 10MHz	-	40	100	-	40	100	mV_{p-p}
Line Regulation ⁶	V_{OUT}	V _{IN} = 9V to 80V	-	2	20	-	2	20	mV
Load Regulation	V_{OUT}	No Load to Full Load	-	3	30	-	3	30	mV
CAPACITIVE LOAD ⁴					500			500	μF
DYNAMIC									
Load Step Output Transient	V_{OUT}	Half Land to Full Land	-	120	240	-	110	220	mV_{PK}
Load Step Recovery ²		Half Load to Full Load	-	0	100	-	0	100	μSec
Line Step Output Transient ^{4,6}	V_{OUT}	101/1- 101/	-	150	300	-	180	360	mV_{PK}
Line Step Recovery ^{2,4,6}		V_{IN} = 16V to 40V	-	50	100	-	50	100	μSec
Turn On Delay ⁶	V_{OUT}	\/ = 0\/ to 20\/	-	14	20	-	14	20	mSec
Turn On Overshoot ⁶		$V_{IN} = 0V \text{ to } 28V$	-	0	50	-	0	50	mV_{PK}

Notes:

- 1. Dependant on output voltage.
- 2. Time for output voltage to settle to within 1% of its nominal value.
- 3. Derate linearly to 0 at 110°C.
- 4. Verified by qualification testing.
- 5. Operation down to 9V is possible after the input voltage is taken above 11V to start the module.
- 6. Tested with a balanced full load of 10W per each output.

BLOCK DIAGRAM

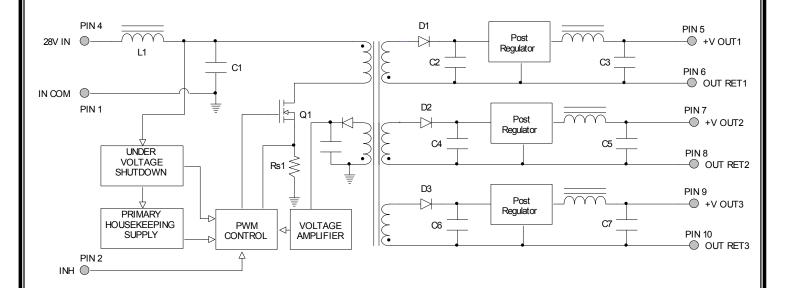


Figure 2

CONNECTION DIAGRAM

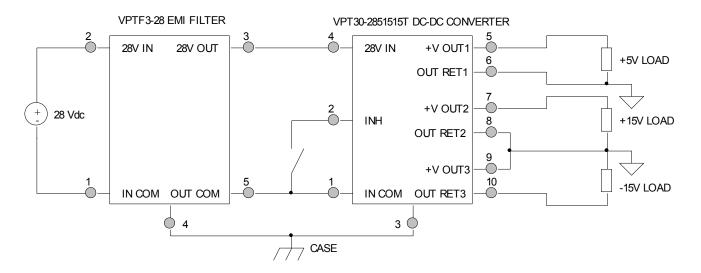


Figure 3
(Shown with optional VPTF3-28 EMI filter, recommended for input voltages > 13V, and optional negative output configuration.)

5

CONNECTION DIAGRAM

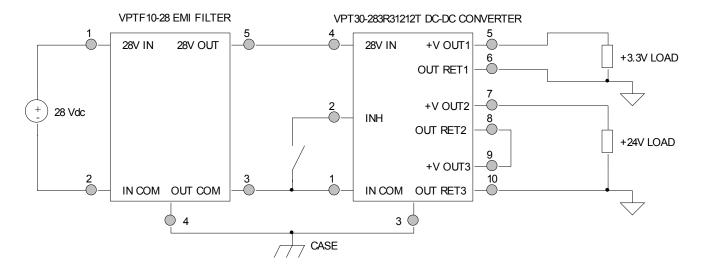
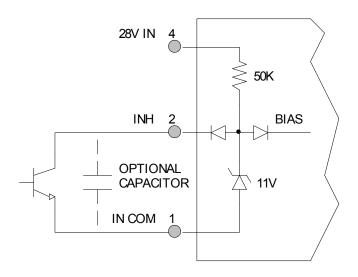



Figure 4
(Shown with optional VPTF10-28 EMI filter, recommended for input voltages < 13V, and optional stacked output configuration.)

Figure 5 - Inhibit Circuit (Shown with optional capacitor for turn-on delay)

EFFICIENCY PERFORMANCE CURVES (T_{CASE} = 25°C, Full Load, Unless Otherwise Specified)

\	V _{IN} = 9V		V _{IN} = 16V		$V_{IN} = 28V$		V _{IN} = 40V		$V_{IN} = 80V$	l
---	----------------------	--	-----------------------	--	----------------	--	-----------------------	--	----------------	---

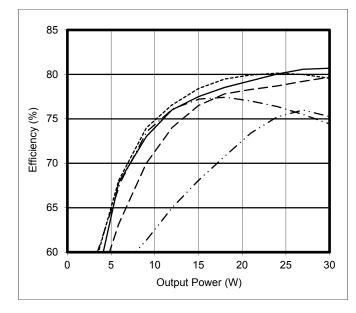
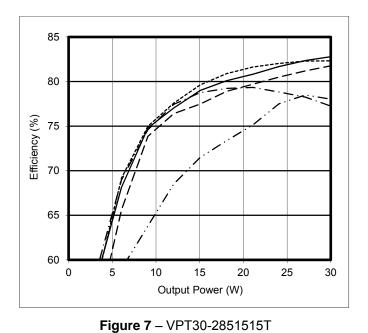
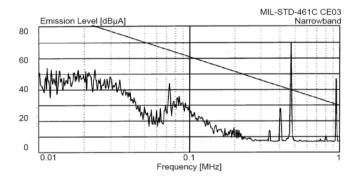



Figure 6 – VPT30-283R31212T Efficiency (%) vs. Output Power (W)



Efficiency (%) vs. Output Power (W)

EMI PERFORMANCE CURVES

(T_{CASE} = 25°C, V_{IN} = +28V ± 5%, Full Load, Unless Otherwise Specified)

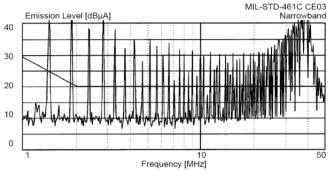
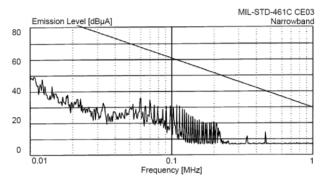



Figure 8 – VPT30-2800T without EMI Filter

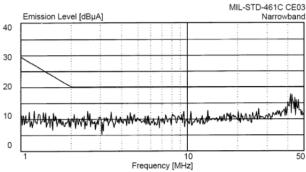
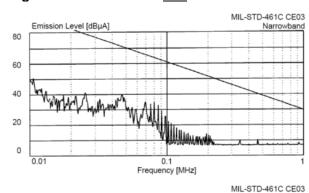



Figure 9 - VPT30-2800T with VPTF3-28 EMI Filter

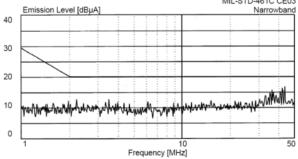
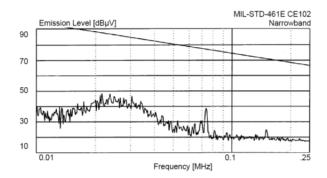



Figure 10 – VPT30-2800T with VPTF10-28 EMI Filter

EMI PERFORMANCE CURVES

(T_{CASE} = 25°C, V_{IN} = +28V ± 5%, Full Load, Unless Otherwise Specified)

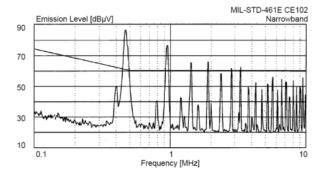
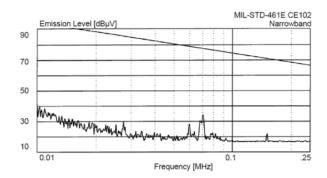



Figure 11 - VPT30-2800T without EMI Filter

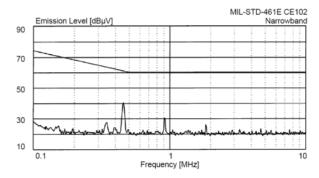
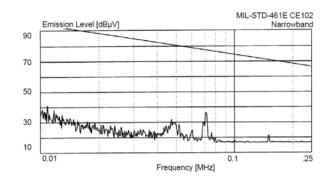



Figure 12 - VPT30-2800T with VPTF3-28 EMI Filter

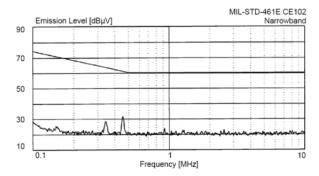
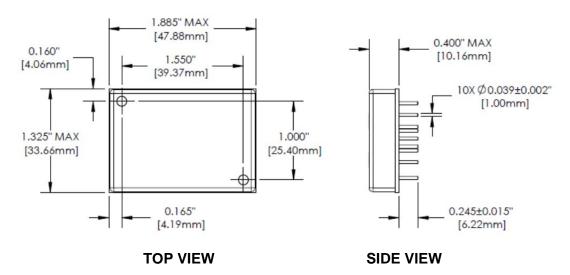
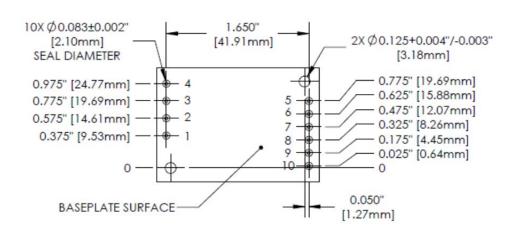




Figure 13 – VPT30-2800T with VPTF10-28 EMI Filter

PACKAGE SPECIFICATIONS

PIN	FUNCTION
1	IN COM
2	INHIBIT
3	CASE
4	28V IN
5	+V OUT1
6	OUT RET1
7	+V OUT2
8	OUT RET2
9	+V OUT3
10	OUT RET3

BOTTOM VIEW

Figure 14 – Package and Pinout (Dimensional Limits are ±0.005" Unless Otherwise Stated)

Package Notes:

- 1. Case temperature is measured on the center of the baseplate surface.
- 2. Materials: Baseplate aluminum, conductive conversion coating. Cover nickel plated.

Pins – copper, gold over nickel plating.

- 3. Mounting holes are not threaded. Recommended fastener is 4-40.
- 4. This Package is not hermetic. VPT offers a wide range of hermetic products. Please contact VPT for details if hermetic products are required.
- 5. For applications requiring exposure to liquid cleaning, please contact VPT.

PACKAGE PIN DESCRIPTION

Pin	Function	Description
1	IN COM	Input Return Connection.
2	INHIBIT	This is an open collector input. Logic Low = Disabled Output. Connect the inhibit pin to input common to disable the output. Unconnected, open collector or open drain = Enabled Output.
3	CASE	Case Connection.
4	28V IN	Positive Input Voltage Connection.
5	+V OUT1	Positive Output 1 Voltage Connection.
6	OUT RET1	Output Return 1 Connection.
7	+V OUT2	Positive Output 2 Voltage Connection.
8	OUT RET2	Output Return 2 Connection.
9	+V OUT3	Positive Output 3 Voltage Connection.
10	OUT RET3	Output Return 3 Connection.

100% ENVIRONMENTAL SCREENING

Screening	Condition
Internal Visual	IPC-A-610
Stabilization Bake	MIL-STD-883, Method 1008, Condition B, 125°C, 24 hours
Temperature Cycling	MIL-STD-883, Method 1010, Condition B, -55°C to +125°C, 10 Cycles
Burn-In	96 hours at +100°C
Final Electrical	100% at 25°C
External Visual	Internal Procedure

ORDERING INFORMATION

VPT30-	28	5	1515	Т
1	2	3	4	5

(2) (1) (3)(4) (5) **Product Nominal Input** Number of Output 1 Outputs 2 & 3 **Series** Voltage **Outputs** VPT30 28 Volts 3R3 Т 28 3.3 Volts 12 Volts Triple 1212 5 5 Volts 1515 15 Volts

CONTACT INFORMATION

To request a quotation or place orders please contact your sales representative or the VPT Inc. Sales Department at:

Phone: (425) 353-3010 **Fax**: (425) 353-4030

E-mail: vptsales@vpt-inc.com

All information contained in this datasheet is believed to be accurate, however, no responsibility is assumed for possible errors or omissions. The products or specifications contained herein are subject to change without notice.