

STRH100N10

Rad-Hard 100 V, 48 A N-channel Power MOSFET

Features

V _{BDSS}	I _D	R _{DS(on)}	Q_g
100 V	48 A	30 mOhm	135 nC

- Fast switching
- 100% avalanche tested
- Hermetic package
- 70 krad TID
- SEE radiation hardened

Applications

- Satellite
- High reliability

Description

This N-channel Power MOSFET is developed with STMicroelectronics unique STripFET™ process. It has specifically been designed to sustain high TID and provide immunity to heavy ion effects. This Power MOSFET is fully ESCC qualified.

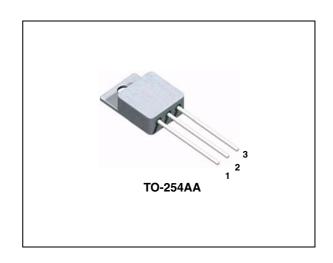


Figure 1. Internal schematic diagram

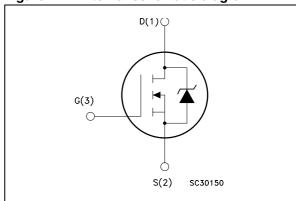


Table 1. Device summary

Part number	ESCC part number	Quality level	Package	Lead finish	Mass (g)	Temp. range	EPPL
STRH100N10HY1	-	Engineering model	TO-254AA	Gold	10	-55 to 150°C	-
STRH100N10HY01	5205/021/01	ESCC flight					Yes

Note: Contact ST sales office for information about the specific conditions for product in die form and for other packages.

Contents STRH100N10

Contents

1	Electrical ratings 3
2	Electrical characteristics5
3	Radiation characteristics 7
4	Electrical characteristics (curves)
5	Test circuits
6	Package mechanical data 13
7	Order codes
В	Revision history

STRH100N10 Electrical ratings

1 Electrical ratings

(T_C= 25 °C unless otherwise specified)

Table 2. Absolute maximum ratings (pre-irradiation)

Symbol	Parameter	Value	Unit
V _{DS} (1)	Drain-source voltage (V _{GS} = 0)	100	V
V _{GS} (2)	Gate-source voltage	±20	V
I _D ⁽³⁾	Drain current (continuous)	48	Α
I _D ⁽³⁾	Drain current (continuous) at T _C = 100 °C	30	Α
I _{DM} ⁽⁴⁾	Drain current (pulsed)	192	Α
P _{TOT} (3)	Total dissipation	170	W
dv/dt (5)	Peak diode recovery voltage slope	2.6	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
TJ	Operating junction temperature	- 55 (0 150	°C

- 1. This rating is guaranteed @ $T_J \ge 25$ °C (see Figure 10: Normalized BV_{DSS} vs temperature).
- 2. This value is guaranteed over the full range of temperature.
- 3. Rated according to the Rthj-case + Rthc-s.
- 4. Pulse width limited by safe operating area.
- 5. $I_{SD} \le 48 \text{ A}$, di/dt $\le 100 \text{ A/}\mu\text{s}$, $V_{DD} = 80\% V_{(BR)DSS}$.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.52	°C/W
R _{thc-s}	Case-to-sink typ	0.21	°C/W

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_J max)	24	Α
E _{AS} ⁽¹⁾	Single pulse avalanche energy (starting $T_J=25$ °C, $I_D=I_{AR}$, $V_{DD}=50$ V)	954	mJ
E _{AS}	Single pulse avalanche energy (starting T_J =110 °C, I_D = I_{AR} , V_{DD} =50 V)	280	mJ
E _{AR}	Repetitive avalanche (V_{dd} = 50 V, I_{AR} = 24 A, f = 10 KHz, T_{J} = 25 °C, duty cycle = 50%)	60	mJ

Electrical ratings STRH100N10

Table 4. Avalanche characteristics (continued)

Symbol	Parameter	Value	Unit
Repetitive avalanche (V_{dd} = 50 V, I_{AR} = 24 A, f = 100 KHz, T_J = 25 °C, duty cycle = 10%)	24	ml	
E _{AR}	Repetitive avalanche (V_{dd} = 50 V, I_{AR} = 24 A, f = 100 KHz, T_{J} = 110 °C, duty cycle = 10%)	7.7	mJ

^{1.} Maximum rating value.

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified).

Pre-irradiation

Table 5. Pre-irradiation on/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	80% BV _{Dss}			10	μΑ
I _{GSS}	Gate body leakage current	V _{GS} = 20 V			100	nA
466	$(V_{DS} = 0)$	V _{GS} = -20 V	-100			nA
BV _{DSS} (1)	Drain-to-source breakdown voltage	$V_{GS} = 0$, $I_D = 1$ mA	100			V
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	2		4.5	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 12 V; I _D = 24 A		0.030	0.035	Ω

^{1.} This rating is guaranteed @ $T_J \ge 25$ °C (see Figure 10: Normalized BV_{DSS} vs temperature).

Table 6. Pre-irradiation dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} (1) C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{GS} = 0$, $V_{DS} = 25$ V, $f=1$ MHz	3940 543 190	4925 679 237	5910 814 284	pF pF pF
C _{oss eq.} ⁽¹⁾	Equivalent output capacitance ⁽²⁾	V _{GS} = 0, V _{DD} = 80 V		480		pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-to-source charge Gate-to-drain ("Miller") charge	$V_{DD} = 50 \text{ V}, I_D = 48 \text{ A},$ $V_{GS} = 12 \text{ V}$	108 21 36	135 27 45	162 33 54	nC nC nC
R _G ⁽³⁾	Gate input resistance		1.2	1.7	2	Ω
L _G	Gate inductance	f=1MHz gate DC bias=0 test signal level=20mV open drain		4.5		nΗ
L _S	Source inductance			7.5		nΗ
L _D	Drain inductance			7.5		nΗ

^{1.} This value is guaranteed over the full range of temperature.

^{2.} This value is defined as the ratio between the \mathbf{Q}_{oss} and the voltage value applied.

^{3.} Not tested, guaranteed by process.

Electrical characteristics STRH100N10

Table 7. Switching times (pre-irradiation)

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _{d(on)}	Turn-on delay time		23	29.5	36	ns
t _r	Rise time	$V_{DD} = 50 \text{ V}, I_D = 24 \text{ A},$	29	40	52	ns
t _{d(off)}	Turn-off-delay time	$R_G = 4.7 \Omega$, $V_{GS} = 12 V$	79	99	119	ns
ì,	Fall time		33	64	95	ns

Table 8. Source drain diode (pre-irradiation) (1)

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)				48 192	A A
V _{SD} ⁽³⁾	Forward on voltage	I _{SD} = 48 A, V _{GS} = 0			1.5	V
t _{rr} ⁽⁴⁾ Q _{rr} ⁽⁴⁾ I _{RRM} ⁽⁴⁾	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 48 \text{ A},$ $di/dt = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 50 \text{ V}, T_J = 25 ^{\circ}\text{C}$	328	413 5 24	498	ns μC A
t _{rr} ⁽⁴⁾ Q _{rr} ⁽⁴⁾ I _{RRM} ⁽⁴⁾	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 48 \text{ A},$ $di/dt = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 50 \text{ V}, T_J = 150 ^{\circ}\text{C}$	400	500 7 28	600	ns μC A

^{1.} Refer to the Figure 16.

^{2.} Pulse width limited by safe operating area.

^{3.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%.

^{4.} Not tested in production, guaranteed by process.

3 Radiation characteristics

The technology of the STMicroelectronics rad-hard Power MOSFETs is extremely resistant to radiative environments. Every manufacturing lot is tested for total ionizing dose (irradiation done according to the ESCC 22900 specification, window 1) using the TO-3 package. Both pre-irradiation and post-irradiation performances are tested and specified using the same circuitry and test conditions in order to provide a direct comparison.

 $(T_{amb} = 22 \pm 3 \, ^{\circ}C \text{ unless otherwise specified}).$

Total dose radiation (TID) testing

One bias conditions using the TO-3 package:

V_{GS} bias: + 15 V applied and V_{DS}= 0 V during irradiation

The following parameters are measured (see *Table 9*, *Table 10* and *Table 11*):

- before irradiation
- after irradiation
- after 24 hrs @ room temperature
- after 240 hrs @ 100 °C anneal

Table 9. Post-irradiation on/off states @ T_J = 25 °C, (Co60 γ rays 70 K Rad(Si))

Symbol	Parameter	Test conditions	Drift values Δ	Unit
I _{DSS}	Zero gate voltage drain current $(V_{GS} = 0)$	80% BV _{Dss}	+4	μΑ
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = 20 V V _{GS} = -20 V	15 -15	nA
BV _{DSS}	Drain-to-source breakdown voltage	V _{GS} = 0, I _D = 1 mA	-25%	V
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	-50% / + 5%	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V; I _D = 36 A	±10%	Ω

Table 10. Dynamic post-irradiation @ T_J = 25 °C, (Co60 γ rays 70 K Rad(Si)) (1)

Symbol	Parameter	Test conditions	Drift values Δ	Unit
Qg	Total gate charge		-5% / +50%	
Q_{gs}	Gate-source charge	$I_G = 1 \text{ mA}, V_{GS} = 12 \text{ V}, V_{DS} = 50 \text{ V}, I_{DS} = 40 \text{ A}$	±35%	nC
Q_{gd}	Gate-drain charge		-5% / +130%	

^{1.} Post irradiation data guaranteed at 25°C per ESCC 22900 specification.

Radiation characteristics STRH100N10

Table 11. Source drain diode post-irradiation @ T_J = 25 °C, (Co60 γ rays 70 K Rad(Si))⁽¹⁾

Symbol	Parameter	Test conditions	Drift values Δ .	Unit
V _{SD} (2)	Forward on voltage	$I_{SD} = 50 \text{ A}, V_{GS} = 0$	±10%	V

^{1.} Refer to Figure 16.

Single event effect, SOA

The technology of the STMicroelectronics rad-hard Power MOSFETs is extremely resistant to heavy ion environment for single event effect (irradiation per MIL-STD-750E, method 1080, bias circuit in *Figure 3: Single event effect, bias circuit*) SEB and SEGR tests have been performed with a fluence of 3e+5 ions/cm².

The accept/reject criteria are:

- SEB test: drain voltage checked, trigger level is set to V_{ds} = 5 V. Stop condition: as soon as a SEB occurs or if the fluence reaches 3e+5 ions/cm².
- SEGR test: the gate current is monitored every 100 ms. A gate stress is performed before and after irradiation. Stop condition: as soon as the gate current reaches 100 nA (during irradiation or during PIGS test) or if the fluence reaches 3e+5 ions/cm².

The results are:

- no SEB
- SEGR test produces the following SOA (see Table 12: Single event effect (SEE), safe operating area (SOA) and Figure 2: Single event effect, SOA)

Table 12. Single event effect (SEE), safe operating area (SOA)

lon	Lat (May//ma/am²)	Energy	Range	V _{DS} (V)					
	Let (Mev/(mg/cm ²)	(MeV) (µ	(µm)	@V _{GS} =0	@V _{GS} = -2 V	@V _{GS} = -5 V	@V _{GS} = -10 V	@V _{GS} = -20 V	
Kr	32	768	94	100	80	60	30	10	

^{2.} Pulsed: pulse duration = 300 µs, duty cycle 1.5%

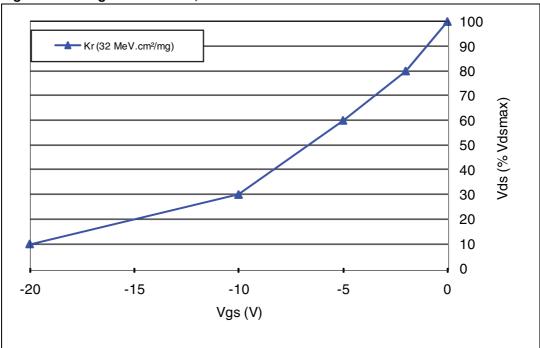
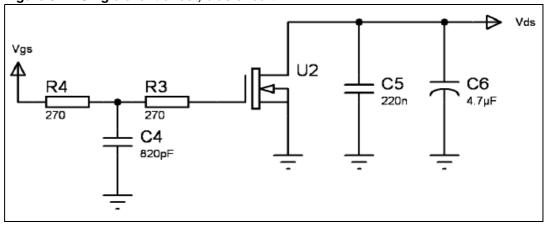



Figure 2. Single event effect, SOA

577

a. Bias condition during radiation refer to Table 12: Single event effect (SEE), safe operating area (SOA).

4 Electrical characteristics (curves)

Figure 4. Safe operating area

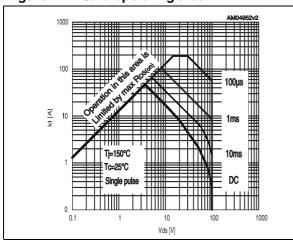


Figure 5. Thermal impedance

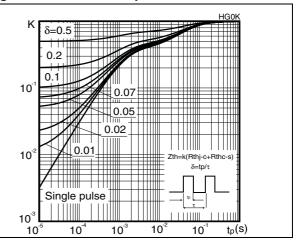


Figure 6. Output characteristics

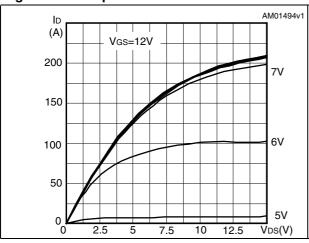
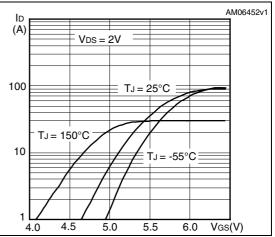
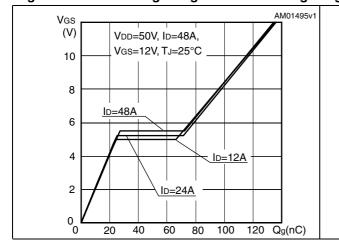
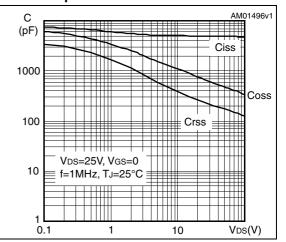
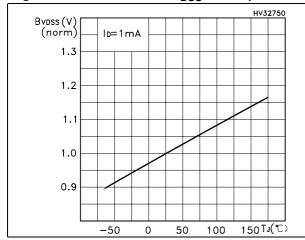


Figure 7. Transfer characteristics


Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

10/17 Doc ID 17486 Rev 6

Figure 10. Normalized BV_{DSS} vs temperature Figure 11. Static drain-source on resistance

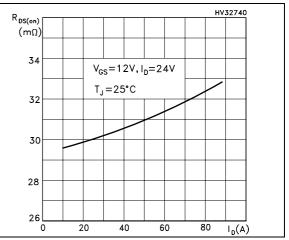
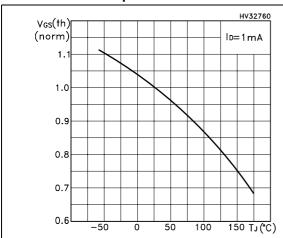



Figure 12. Normalized gate threshold voltage Figure 13. Normalized on resistance vs vs temperature temperature

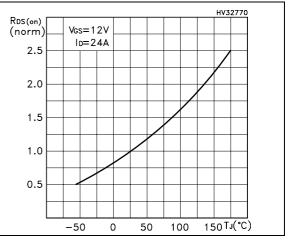
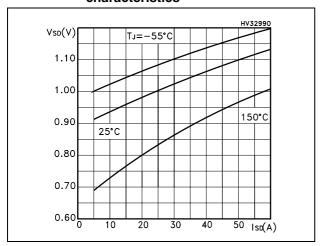
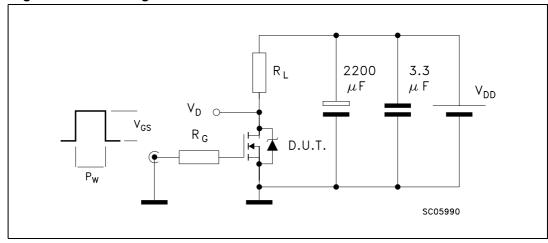



Figure 14. Source drain-diode forward characteristics



577

Test circuits STRH100N10

5 Test circuits

Figure 15. Switching times test circuit for resistive load ⁽¹⁾

1. Max driver V_{GS} slope = 1V/ns (no DUT)

Figure 16. Source drain diode

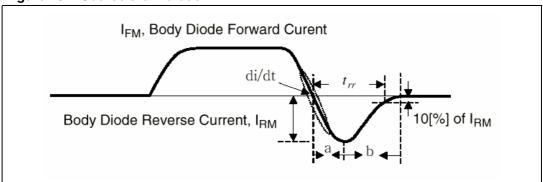
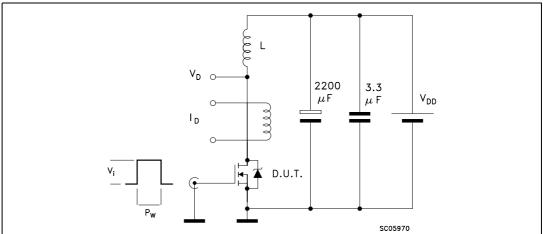



Figure 17. Unclamped inductive load test circuit (single pulse and repetitive)

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 13. TO-254AA mechanical data

Dim.		mm		Inch		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	13.59		13.84	0.535		0.545
В	13.59		13.84	0.535		0.545
С	20.07		20.32	0.790		0.800
D	6.32		6.60	0.249		0.260
E	1.02		1.27	0.040		0.050
F	3.56		3.81	0.140		0.150
G	16.89		17.40	0.665		0.685
Н		6.86			0.270	
I	0.89	1.02	1.14	0.035	0.040	0.045
J		3.81			0.150	
K		3.81			0.150	
L	12.95		14.50	0.510		0.571
М	2.92		3.18			
N			0.71			
R1			1.00			0.039
R2	1.52	1.65	1.78	0.060	0.065	0.070

R1 C N L R2 G

Figure 18. TO-254AA mechanical drawing

577

STRH100N10 Order codes

7 Order codes

Table 14. Ordering information

Order code	ESCC part number	Quality level	EPPL	Package	Lead finish	Marking	Packing
STRH100N10HY1	-	Engineering model	-	TO-254AA	Gold	STRH100N10HY1+ BeO	Strip pack
STRH100N10HY01	5205/021/01	ESCC flight	Yes			520502101	pack

Contact ST sales office for information about the specific conditions for products in die form and for other packages.

Revision history STRH100N10

8 Revision history

Table 15. Document revision history

Date	Revision Changes	
13-May-2010	1	First release.
14-Jun-2010	2	Updated Table 1: Device summary.
18-Oct-2010	3	Updated Table 1, 5, 9 and 14.
23-Dec-2010	4	Updated Figure 2: Single event effect, SOA. and TO-254AA mechanical data.
25-Jul-2011	5	Updated part numbers in <i>Table 1: Device summary</i> and <i>Table 14: Ordering information</i> . Minor text changes to improve readability.
09-Nov-2011	6	Updated dynamic values on <i>Table 6: Pre-irradiation dynamic</i> , <i>Table 7: Switching times (pre-irradiation)</i> and <i>Table 8: Source drain diode (pre-irradiation)</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

